Spontaneous and electric field–controlled front–rear polarization of human keratinocytes

نویسندگان

  • Deniz Saltukoglu
  • Julian Grünewald
  • Nico Strohmeyer
  • Robert Bensch
  • Maximilian H. Ulbrich
  • Olaf Ronneberger
  • Matias Simons
  • Fred Chang
چکیده

It has long been known that electrical fields (EFs) are able to influence the direction of migrating cells, a process commonly referred to as electrotaxis or galvanotaxis. Most studies have focused on migrating cells equipped with an existing polarity before EF application, making it difficult to delineate EF-specific pathways. Here we study the initial events in front-rear organization of spreading keratinocytes to dissect the molecular requirements for random and EF-controlled polarization. We find that Arp2/3-dependent protrusive forces and Rac1/Cdc42 activity were generally required for both forms of polarization but were dispensable for controlling the direction of EF-controlled polarization. By contrast, we found a crucial role for extracellular pH as well as G protein coupled-receptor (GPCR) or purinergic signaling in the control of directionality. The normal direction of polarization toward the cathode was reverted by lowering extracellular pH. Polarization toward the anode was also seen at neutral pH when GPCR or purinergic signaling was inhibited. However, the stepwise increase of extracellular pH in this scenario led to restoration of cathodal polarization. Overall our work puts forward a model in which the EF uses distinct polarization pathways. The cathodal pathway involves GPCR/purinergic signaling and is dominant over the anodal pathway at neutral pH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameters Design and Economy Study of an Electric Vehicle with Powertrain Systems in Front and Rear Axle

To achieve higher economy of the original driving scheme with single motor and settled gear ratio, new configurations with different powertrain systems in front and rear axle were designed. Firstly, according to the power and torque required by a micro electric vehicle (mEV) in various drive cycles, the parameters of a small and high power motor were determined. Secondly, for schemeⅠwith dual m...

متن کامل

The Par-Tiam1 Complex Controls Persistent Migration by Stabilizing Microtubule-Dependent Front-Rear Polarity

BACKGROUND The establishment and maintenance of cell polarity is crucial for many biological functions and is regulated by conserved protein complexes. The Par polarity complex consisting of Par3, Par6, and PKCzeta, in conjunction with Tiam1-mediated Rac signaling, controls apical-basal cell polarity in contacting epithelial cells. Here we tested the hypothesis that the Par complex, in conjunct...

متن کامل

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Laboratory for Particle Physics Divisional Report CERN LHC/97-10 (DLO) Displacement and Emission Currents from PLZT 8/65/35 and 4/95/5 Excited by a Negative Voltage Pulse at the Rear Electrode

It is shown that non-prepoled PLZT ceramics, both in ferroelectric and antiferroelectric phase, emit intense current bursts when a negative exciting voltage is applied to the rear surface of the cathode. The spontaneous polarization induced in the bulk by applying the field through the cathode disk, creates a sheet of negative charge on the diode boundary of the ferroelectric. This, in turn, in...

متن کامل

Analysis of Electric Field and Polarization of SF6 Circuit Breaker to Approach a Suitable Structure

Abstract: The application of electric field theory to widely different aspects of electrical insulation has led to more understanding the phenomena. Electric fields may be considered as the main reason for insulation failure. The purpose of this paper is to modify importance of analyzing electric field in insulation design. The SF6 circuit breaker is chosen as case study that encounters cri...

متن کامل

Epidermal growth factor induction of front–rear polarity and migration in keratinocytes is mediated by integrin-linked kinase and ELMO2

Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2015